\[\begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{pmatrix} +
\begin{pmatrix}
j & k & l \\
m & n & o \\
p & q & r
\end{pmatrix} =
\begin{pmatrix}
a+j & b+k & c+l \\
d+m & e+n & f+o \\
g+p & h+q & i+r
\end{pmatrix}\]
Multiply w/Scalar
\[n \cdot
\begin{pmatrix}
j & k & l \\
m & n & o \\
p & q & r
\end{pmatrix} =
\begin{pmatrix}
n \cdot j & n \cdot k & n \cdot l \\
n \cdot m & n \cdot n & n \cdot o \\
n \cdot p & n \cdot q & n \cdot r
\end{pmatrix}\]
Multiply w/Matrix
AS LONG AS NUMBER OF COLS IN FIRST (LHS)= NUMBER OF ROWS IN SECOND (RHS)
Unlike numbers, the order of the multiplication matters, even if you’re multiplying together two square matrices that could be multiplied in either order.
the product is a matrix with LHS ROWS and RHS COLUMNS
\[\begin{pmatrix}
a & b & c \\
d & e & f
\end{pmatrix}
\times
\begin{pmatrix}
g & h & i \\
j & k & l \\
m & n & o
\end{pmatrix}\]
each row is a vector in LHS, each col a vector in RHS